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A Monte Carlo computer simulation of a neutron diffraction experiment is presented which is of particular 
use for systems where the structure factor modulates considerably. The program has been optimized by 
forcing successive scattering events to occur within the specimen under study, and by calculating the score 
into the detector at each scattering point to allow each simulated path to contribute to the detected scattered 
intensity. A method of determining the multiple scattering correction for time-of-flight diffraction is shown, 
and the results of such an analysis are presented for a specimen with intense forward angle scattering and 
strongly varying S(Q). 

I. Introduction 
The diffraction of radiation is used for the study of the 
structure of isotropic systems (randomly oriented poly- 
crystals, liquids, glasses and non-crystalline materials), 
and the intensity of the scattered radiation as a function 
of scattering angle gives a measure of the relative 
ordering of the atoms within the system (Wright, 1974). 
Various review papers (Enderby, 1968; Leadbetter, 
1973; Page, 1973) have described methods used for the 
analysis of neutron diffraction data of such systems. 
Coherent scattering by the sample causes the multiple 
scattering also to be dependent on the scattering angle, 
so that accurate techniques must be available for cor- 
recting the measured data for neutrons scattering more 
than once within the sample, in order to obtain reliable 
data from which the static structure factor may be 
extracted. 

A simple method used for correcting for multiple 
scattering is one in which the loss of neutrons which 
are first scattered into the detector direction but are 
later scattered from that path are compensated by the 
gain of neutrons which are not primarily scattered into 
the detector direction but are scattered later into that 
direction. Effectively this correction is similar to the 
attenuation correction of the primary beam, so that it 
is not angularly dependent, and it has limited applica- 
tion in diffraction experiments. 

An analytic method which has some degree of angu- 
lar dependence is based on the quasi-isotropic approxi- 
mation, an extension of a technique suggested by 
Vineyard (1954). In cases where the angular distribu- 
tion of primary scattered neutrons is nearly isotropic, 
it is reasonable to assume that the ratio of successive 
scattering probabilities is a constant, i.e. successive 
probabilities form a geometric progression. Provided 
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that the probabilities of single and double scatter may 
be calculated, then the probability of multiple (more 
than one) scattering may be estimated. The formulation 
for multiple scattered intensity in terms of orders of 
scattering may be extended, since the distribution of 
higher order scattered neutrons tends to become iso- 
tropic, and has been evaluated for anisotropic, elastic 
scattering in plane samples (Cocking & Heard, 1965). 
It is found that even for systems where the scattering 
has some angular dependence, the twice scattered 
component has a roughly isotropic distribution. Ad- 
ditionally the approximation has been shown to give 
reasonable agreement with the observed multiple 
scattering for simple systems (Wignall, 1967). However 
the second scattering component is expressed in terms 
of an integral which in general may be complicated to 
perform except for simple geometries. This method has 
also been extended to inelastic scattering (Cocking, 
1968; Demichelis, Raia & Tartaglia, 1975). 

Generally neutron diffraction data is taken relative 
to the scattering from a reference material whose cross 
sections are well understood, and vanadium is a usual 
choice. Since the scattering from vanadium is pre- 
dominantly incoherent and isotropic, Vineyard's meth- 
od works well for multiple scattering from vanadium. 
A numerical integration computer program is used to 
obtain the second scattering probability for an infinite 
vanadium slab (Agrawal, Das & Mueller, 1971: 
Copley, Price & Rowe, 1973). 

The analytical methods break down completely 
when the multiple scattering becomes strongly angular 
dependent, and the question whether any corrections 
can be applied becomes important; that is, whether 
corrections actually improve the data. While the ana- 
lytic approximations may be easy to handle, these 
must at the same time be useful approximations which 
actually work. The Monte Carlo technique allows a 
check on the analytic approximations which have been 
used, and in addition is useful for situations where the 
scattering law is an awkward function or cannot be ex- 
pressed analytically. In these situations it is often the 
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case that the only useful multiple scattering corrections 
that may be applied are those derived from a Monte 
Carlo simulation. In addition such a technique allows 
the real experiment to be analyzed for optimum sample 
size and geometry, and also allows experimental con- 
ditions such as collimation to be investigated. In the 
present work we discuss an optimized Monte Carlo 
simulation of neutron diffraction measurements in 
which the scattering is assumed to be entirely elastic. 

2. The Monte Carlo technique 

In any computer diffraction simulation, the angles of 
scatter are determined through the static structure 
factor S(Q) which is given as input to the program. 
However, the determination of the position of the 
scattering events is worthy of more than a cursory 
glance, for the path length I, in the direction ~ ,  be- 
tween the (n -1) th  scattering event and the nth scat- 
tering event should be selected efficiently. Fig. 1 
schematically illustrates multiple scattering events. 
Nakai (1974) divided the distance t. from the position 
r,_ t of the previous scattering point to the sample sur- 
face in the direction ~ .  into thin slices of thickness At.. 
The fate of the neutron after entering a slice is deter- 
mined by the choice of a random number R~, in the 
interval (0,1). For Rt<ZTAt,, an interaction occurs 
within the slice; the type of interaction is determined 
by the relative strengths of the coherent and incoherent 
scattering and the absorption cross sections. For 
Rt>S,rAt,, the neutron enters the next slice, and the 
process is repeated. The number of slices must be deter- 
mined by considering the thickness and total cross 
section of the specimen. 

This process is somewhat inefficient and the inter- 
action rate along a path length t, may alternatively be 
determined from the path length distribution function 
F(l) given by 

f, F(I)= exp ( -£ rX)Srdx ,  (1) 
do 

which is equivalent to summing over the slices as in 
Nakai's approach. 

~n-1 f'lO 

fin 
Fig. 1. A schematic drawing showing the angle of scatter for the 

(n - 1 )th scattering event, the nth path length, and the scoring into 
the detector for the nth scattering event. 

The path length to the next interaction point is deter- 
mined by the random number R~ in the interval (0,1), 
viz. 

Rt = F(1) = 1 - exp ( - Srl) (2) 

so that the path length is given by 

1 
l -  log (1 - Rt). (3) 

S r  

A direct simulation such as Neutron Elastic Scattering 
Simulation (NESS) (Meardon, 1973) uses this distribu- 
tion, and since the random number is selected from a 
uniform distribution in the interval (0,1), then the equa- 
tion (3) may be replaced by 

1 
1-  log Rt. (4) 

Zr  

There are various disadvantages to this method of 
pursuing the calculation; 

(1) Only a fraction Zs/ST of the interactions are 
scattering events, and it is scattering which is exclu- 
sively of interest in a diffraction experiment, since ab- 
sorbed neutrons are not detected; 

(2) The path length distribution (equation 1) is such 
that its cumulative value is unity only at an infinite 
path length; that is, some interaction points would be 
outside the sample, and therefore no such interaction 
occurs and the neutron escapes from the sample. 

(3) Most importantly, the majority of scattered 
neutrons escape from the sample and miss the detector 
altogether; the histories contribute nothing to the cal- 
culation except to evaluate the proportion of neutrons 
that strike the detector. 

Consequently even for a 10 ~o scattering sample with 
no absorption, of the order of 10% of the neutrons 
leave the sample after one scatter, about 1% after two 
scatters, etc. Not only are a great number of neutron 
histories required to be followed for the statistics of 
the multiply scattered neutrons to be adequate, but 
also only a small proportion of these are scattered into 
detector directions. Hence more refined Monte Carlo 
techniques must be used so that each simulated path 
contributes to the scattered intensity into the detector. 

Our procedure follows the work of Bischoff (1970) 
and Bischoff, Yeater & Moore (1972) in which the con- 
tribution of each simulated path is evaluated by the 
computation of a score in the detector at each scatter- 
ing point. The Bischoff program has been extended by 
Copley (1974) to give the general program MSCAT 
which is useful for correcting inelastic scattering data. 
A similar program DISCUS has been written by 
Johnson (1974). These programs are wasteful when 
only diffraction experiments are considered and we 
have pared Copley's program of all references to in- 
elastic events to make it most efficient for assumedly 
elastic scattering. This elastic version of MSCA T will 
be most useful for the evaluation of corrections to 
diffraction data of isotropic systems whose structure 



956 M U L T I P L E  SCATTERING C O R R E C T I O N  TO N E U T R O N  D I F F R A C T I O N  DATA 

factor is a continuous function over the entire distri- 
bution of scattering angles. Though much of the scat- 
tering at larger angles will in fact be inelastic, the static 
approximation allows total diffraction data to be 
treated as entirely elastic scattering with suitable cor- 
rections (for a review, see Wright, 1974). 

Consequently the algorithm used is still that of 
Bischoff; that is, each collision of the neutron is forced 
both to occur within the sample and to be a scattering 
event, and the probability of each neutron being scat- 
tered into each detector after every collision is deter- 
mined. This technique allows every neutron at every 
collision to contribute to the angular scattered inten- 
sity or score at every detector, and improves the con- 
vergence of the calculation. These forced events are 
compensated by an adjustment to the statistical weight 
of the neutron at each scattering event. While the re- 
lative numbers of multiply and singly scattered neutrons 
remain the same, the statistics of the multiply scat- 
tered neutrons are built up more efficiently. 

The various methods available for reducing the 
variances in Monte Carlo simulations of neutron 
scattering experiments have been reviewed by Bischoff 
(1970) and Kalli (1972, 1973). In our program successive 
scatterings are forced to occur and the neutron stati- 
stical weight is decreased rapidly until it falls below a 
certain cut-off weight at which point the history is 
terminated by a game of 'Russian roulette'; that is, 
there is a half chance that the neutron is 'lost' and a new 
history started, and a half chance that the neutron 
weight is incremented by a factor of two and the history 
is continued. This procedure has the attraction of con- 
centrating the low-weighted events in a relatively small 
number of neutrons, and need not introduce any bias- 
ing of the result. 

3. The optimized Monte Carlo simulation 

The simulation traces many histories for neutrons of 
the same incident neutron energy, and the probability 
that a neutron is scattered into a detector direction is 
obtained from the summation of the probabilities of 
neutrons being scattered into that detector direction 
for all orders of scatter. The algorithms for following a 
neutron's history between successive scattering events 
and for scoring into each detector are given, and the 
various steps are analyzed for optimization. 

A. Path length distribution 
After the (n -1) th  scattering event at r._ 1 into the 

direction f~., the distance t. to the exit surface in the 
direction f~. is computed (see Fig. 1). The escape 
probability of the neutron is simple exp ( - S r t . ) ,  and 
the collision probability 1 - e x p  ( - E f t . ) .  Hence the 
scattering probability is (EJSr)[1 - e x p  ( - Z r t . ) ] .  The 
scattering event is forced to occur within the sample by 
selecting the nth collision point from the cumulative 
distribution function for path lengths, 

f ~"exp ( - Zrl)dl 
F( I . )  = o (5) 

f t"exp ( -  Z'rl)di 
0 

That is, the scattering event is forced to occur at a 
distance I. < t. from r._ 1 in the direction £/. by selecting 
a random number Rz. in the interval (0,1), such that 
the distance l. is chosen from the modified exponential 
distribution 

Rz. = F(I,) = 1 - exp ( - Srl.) 
1 - exp ( -  S~-t.)" (6) 

The distance l. may be obtained easily from the above 
expression, viz. 

1 
l , -  r r  log { 1 - Rt.[ 1 - e x p  ( -  2;Tt,)]}, (7) 

which is analogous to equation (3) for the non-op- 
timized program. This is shown schematically in Fig. 2. 

The use of statistical weights takes into account the 
probability of absorption and escape of neutrons, and 
allows the consideration only of scattered neutrons. 
The statistical weight of the neutron is altered by factors 

(1) 1 - exp ( - Zrt,), to allow for the probability that 
neutrons may not have interacted within the sample; 

(2) Zs/Sr, to allow for the probability that neutrons 
may have been absorbed within the sample. 

Consequently the statistical weight of the neutron 
at the nth scatter is given by 

Z'~ [1 - e x p  ( -  Z'rt.)] (8) w.= w._l 

where I4I._ 1 is the neutron weight at the previous 
scatter, so that the weight of the neutron at the nth 
scattering event is simply given by 

W~=Wo?~.= I ; s [ 1 - e x p ( - 2 r t j ) ]  (9) 

where Wo is the initial neutron weight. 

B. Scattering angle distributions 
Angles of scatter are selected at each scattering event 

FIt) 

t 
F l t n )  - -  --1 

F( In )  - -  "='- RI n 

I 

F(O I  1 o 
0 In  tn  " - 4 " 1  

Fig. 2. A schematic drawing of the random selection of a path length 
I. from the cumulative distribution function F(/). 
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from the cumulative distribution of scattering angles, 

° I ' 0a (0', 2) sin 0'd0' 

(10) 
f(O.) = ~o (~a (0', 2) sin 0'd0' 

The distribution of azimuthal angles is uniform, of 
course, since the scattering for isotropic systems is in- 
dependent of azimuth; that is 

f'(tp.) = tp./2n. (11) 

Hence the selection of a random number Ro. in the 
interval (0,1) produces a scattering angle 0. given by 

o~, Oa 
~-~ (0', 2) sin 0'd0' 

(12) Ro.=T(O.)= Oa , 
(0,2) sin 0'd0' 

From the elastic scattering equation 

Q =4=/2 sin 0/2 (13) 

a corresponding scattering vector Q. may alternatively 
be selected from the diffraction pattern S(Q); here we 
use the convention 

aa (0,2)=S(Q) 
Oo 

f Q" S(Q)QdQ 
0 (14) go. = f(Q.)= k 

flS(Q)QdQ 

where k=2n/2 is the neutron wavevector. This is 
shown schematically in Fig. 3. 

flQI f i l l )  

fl2k) f l ' f f )  - -  

t tGt~| f l S n l - -  

I 

e~ 

• i ~ ' R i ~  t - RQ~ 

TT - . - - - , * , -  | 

2k ~ Q 

Fig. 3. A schematic drawing of the random selection of a scattering 
angle 0. (and hence a corresponding wave vector transfer Q.) from 
the cumulative distribution function f(O). 

The selection of a random number R,p. in the interval 
(0,1) produces an azimuthal scattering angle q~. given 
by 

g,p. = f'(q~.) = q~./2~. (15) 

Once these angles of scatter are chosen, then the new 
direction ft .  + 1 of the neutron is computed from 

~ .+  1 • ~ .  = c o s  0 . .  (16) 

For the case of isotropic scattering where 0a/OQ is 
independent of scattering angle, or S(Q) is constant, 
then equation (14) reduces to 

RQ.=Q2/4k 2. (17) 

Again, from the elastic scattering equation (13), the 
scattering angle 8. is given by 

cos 8.=(1 - 2Re.). (18) 

In general, the structure factor S(Q) is not given in 
analytic form, and consequently the determination of 
the scattering angle is not as easy as the selection of the 
collision distance. Prior to the running of the neutron 
histories, an array t(Q) must be set up with the values 

t(Qm)= ~ S(Qj)QjAQj, (19) 
j = l  

where A Qj is the equal-step incremental value of Q. The 
maximum value is t(2k) which is simply 

t(2k)= S(Q)QdQ. (20) 
0 

Since in the approximation of elastic scattering the 
cross section may be obtained from 

27r fZk S(Q)QdQ , (21) a,(k)= ~-  o 

then 

as(k)k 2 2nch(2) 
t(2k)-  21t 2 2 (22) 

After a random number Re. has been selected, the 
determination of the scattering vector Q. is performed 
by searching through t(Q) until 

t(Qm)<__RQ,t(2k)<t(Qm+ a)=t(Qm+ AQm). (23) 

That is, 

f(Qm)<__ Ron < f(Qm+ x). (24) 

Then the scattering vector is given by 

QI<_Q.<QI+, , (25) 

and, by linear interpolation, 

Q.=Qm + AQ., Rq.t(2k)- t(Qm) (26) 
t(Qm+l)-t(Qm) " 

C. Detector scoring 
When interaction points and scattering angles are 

chosen as described in ~ 3A and 3B above, the simula- 
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tion is optimized in the sense that the simulated paths 
are truly characteristic of the paths travelled in the 
real case. Direct simulations have this property also. 
However, the continuation of histories by forcing 
scattering collisions in the specimen further optimizes 
the simulation by sampling events which have rela- 
tively low probability, without the need for tracing 
large numbers of histories. 

After the nth scattering point has been selected, but 
before the angle of scatter has been chosen, a score 
5P.(flo) is computed for each detector in turn. The 
distance LD,,(r,,, flo) from the scattering point r. to the 
surface of the sample in the detector direction flo is 
found in order to compute an escape probability. The 
scattering angle 0o. from the direction f t ,  to flo (and 
hence the corresponding scattering vector Qo,) is 
found in order to compute the differential scattering 
probability, 

AQ D t~ty AQD 
Pp.-- (0D,,) = S(QD.) (27) 

O's 0~ O's ' 

where A~o is the solid angle subtended by the detector 
at the sample. 

The score is also dependent on the statistical weight 
of the neutron at the nth scattering event, so that 

,~Yn(~-~D) = WnPDn exp (-XTLD.).  (28) 

method for treating many wavelengths in a single 
simulation. That program can also be used for a 'mono- 
chromatic' beam experiment with a large wavelength 
spread A2. In this paper, however, we assume that the 
wavelength resolution is such that it is negligible com- 
pared with the angular resolution. Additionally it is 
useful in many experiments to have a simple program 
which is more easily operable and much less costly 
than programs designed to simulate inelastic scattering 
(Copley, 1974; Johnson, 1974), in which the wavelength 
spread of the incoming neutron beam is considered. 

E. Sample geometries 
The program has been written so that one subroutine 

defines the incoming neutron beam profile and the dif- 
fractometer geometry with the direction cosines of the 
particular detectors. Another subroutine gives the 
sample configuration, such as vertical cylinder cen- 
trally located in the beam, or a slab placed at an angle 
in the beam, or some other geometry as suggested by 
Copley (1974). In addition, this subroutine has been 
written for complicated sample geometries, such as a 
number of cylindrical tubes placed in the neutron 
beam, and therefore the program may be used in situa- 
tions where no analytic approximation is available. 
These subroutines can readily be changed to accom- 
modate the needs of a specific measurement. 

In practice there is no differentiation among the scores 
( o P 2 , ~ 3 ,  . . .  etc., since all the scores are due to multiply 
scattered neutrons. This simulation with scores com- 
puted for each detector according to a neutron trans- 
port escape calculation (and with weights adjusted at 
each collision) significantly reduces the computational 
effort compared to a direct simulation wherein only 
those neutrons which actually escape to a detector are 
counted. 

D. Neutron initialization 
In general, the incident beam distribution is not a 

separable function of direction, position and wave- 
length. While it is a useful approximation to assume 
separability, the correct method is to account for the 
correlation among angles, positions and wavelengths in 
the actual joint probability distribution describing the 
incident neutron beam. Consequently it would be 
correct to assign an initial weight W0(fL r, 2) according 
to this probability distribution. In our simplified pro- 
gram each neutron is given an initial weight of unity 
and an initial direction identical to the nominal inci- 
dent beam direction. The position coordinates of the 
neutron in the incident beam are chosen at random 
from a uniform distribution. Furthermore, the beam 
is assumed to be monochromatic. 

It is worth pointing out that these simplifications 
preclude a complete simulation of resolution effects 
due to wavelength and angular spread in the incident 
beam, which we have ignored. In a subsequent paper 
(Mildner & Carpenter, 1977) we describe an efficient 

F. Structure factor input data 
A calculation of the multiple scattering in a diffrac- 

tion experiment of course requires an estimate of the 
structure factor S(Q) for the specimen, which is used in 
generating the scattering angle distribution (equation 
14). Since S(Q) is what we wish to measure, its estima- 
tion is usually the greatest difficulty in multiple scatter- 
ing calculations. S(Q) may be available from models, 
or other sources, but in many cases is not. In such situa- 
tions the uncorrected data themselves may be em- 
ployed, provided that the multiple scattering correc- 
tions are not too great. Then it may be asserted with 
some confidence that the computed corrections are 
adequate. In principle, the once-corrected data might 
then again be used to generate a second multiple scat- 
tering correction, and so on ad infinitum. In cases where 
multiple scattering is not too  important, the first 
iteration should be adequate. This method should be 
superior to one using a structure factor derived from 
some model independent of the particular experiment 
since the results will tend to be biased toward the 
model. 

4. Cumulative scoring 

The purpose of the Monte Carlo simulation is to pro- 
vide values of PI(O) and PM(O), the probabilities of 
single and multiple scattering into a detector bank at an 
angle 0, which are given by the average values of the 
scores ~k(0) and ~k(0) ,  where k labels the individual 
neutron history, 
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D(O) ~--,T 

× [ 1 - e x p ( - Z v t ~ ) ] P o ,  exp[--STLo(r , ,~o)]  (29) 

and 

Y, (30) 
N = 2  

where 

)UDg~ [ 1 - e x p  ( - S r t , ) ]  

x PDNeXp [--2;rLD(rm~D)]. (31) 

The summation accounts for the finite extent of detec- 
tors by treating them as points at different azimuthal 
angles with suitable weightings Up to account for the 
azimuthal location of a group of detectors which may 
be arranged at a given 0. (The solid angle subtended by 
each azimuthal detector is incorporated in Pm and 
PDN.) Several azimuthal detectors may be equivalent 
so that U p =  1,2,etc., according to the number of sym- 
metrically equivalent azimuthal detectors. 

Simulation statistics 
We assume that each individual score 5ak(0) is 

selected independently and randomly from an un- 
known probability distribution with a mean PN(O) and 
variance o.2. Summations of the scores 5ak(0) over the 
total number K of neutron histories will yield average 
values of the scores 

1 r 
5aN(0) = ~ ~--E15a~(0) • (32) 

The sample mean 5aN(0) is the simulation estimate of 
PN(O), and provided K is large enough, the average 
value of 5aN(0) approaches PN(O). That is 

1 x 
PI(0)= L i m ~  ~" 5a](0) (33) 

K -'* oo k = l  

PM(0)= Lim ~ I(0). (34) 
K - - * ~  k = l  = 

An estimate of the variance o .2 of the distribution of 
simulated scores 5aN(0) is given by 

1{ 1 t - 5aN(0)] 2 (35) 0"2K K - 1  k 

where N = 1 or M. Then (rZK/K is an estimate of the 
variance a2~, of the probability distribution of ,9~N(0) 
about the mean value PN(O). This estimate however is 
subject to the difficulties associated with sampling from 
an unknown (presumably non-Gaussian) distribution. 
A method of grouping data to determine confidence 
limits to the estimated mean 5aN(0) has been used to 
overcome this problem. 

The independent samples are divided into KG groups 
of Km histories in the ith group. Each group i(1 < i<  
K~) is regarded as an independent sample of the prob- 

ability distribution, and the average scores for single 
and multiple scattering for the ith group are 

1 ~ 5a~(0) (36) 5ail(O)-- Kni k~k~i 

and 
1 

Kni k~k,, N~=Z 5a~(O) " (37) 

If the Km are large enough (,-~ 100), the distribution of 
the means of these samples becomes approximately 
normal by the central limit theorem. Then for KG 
groups, the average scores for single and multiple 
scatterings are given by the group means, 

KG 
1 ~ 5f~(0) (38) 

5 a l ( 0 ) =  i=1 

and 
1 re 

5aM(0)= ~ i~sa~(0)"  (39) 

The variance of the distribution of group-averaged 
score 5a~(0) is estimated by 

2 1 5a~(0)- 5aN(0)] 2 . (40) 
aNZG-- K ~ -  I i 

Then the measure of the deviation of the sample mean 
SeN(0) from the probability distribution mean PN(O) is 
the standard deviation O.N of the group-averaged scores 

1 
aN = ~ ar,'KG, (41) 

where N = 1 or M. 

5. Multiple scattering correction 

It is interesting to compute the probability 1:'i(0) in the 
'ideal' scattering experiment where there is no beam 
attenuation and no multiple scattering. The effective 
thickness i of the target as seen by the incoming beam 
in the fl0 direction is the value of t l averaged over the 
beam profile. For thin samples the probability of a 
scattering event is Sfl, and in the absence of finite 
target corrections, the score would be 

5at(O) = y" UoZflPoo. 
D(O) 

With the substitution of equation (27) and of 

(42) 

S fl = JV'o. (43) 

where JV" is the number of scattering atoms per unit 
area, and after summation over all detectors at a par- 
ticular scattering angle, the ideal probability PI(O) of 
scattering (that is, with no finite target effects) becomes 

PI(O) = 5at(O) = Y a P o o  = ~US(Q)A f2o. (44) 

The multiplicative correction factor that is necessary 
to be applied to the ideal scattered intensity to account 

AC 33A- 7 
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for the finite thickness of the specimen is (P~ + PM)/Pt. 
This factor may be separated into two, viz. 

(1) the attenuation correction factor: 

CA =-- P1/PI and; 

(2) the multiple scattering correction factor: 

CM-(1 + PM/P~)= PT/Pt • 

Then the overall correction factor is 

Co= Pr P1 Pr _ P1 
P--; = P, PI p, (1 +PM/P,)=C, CM. (45) 

This factor is to be divided out of the measured data 
to obtain the ideal scattered intensity. 

There may be an advantage in smoothing certain 
of the computed functions which are expected not to 
exhibit strong variations with Q, in order to diminish 
computational statistical errors. The multiple scatter- 
ing probability PM(Q) is expected to be rather smoothly 
varying [this is a somewhat relaxed version of Vine- 
yard's (1954) arguments] so that PM(Q) is a candidate 
for smoothing. Also, to a crude approximation, the 
attenuation correction factor Ca(Q) may be expressed 
a s  

PI(Q) ~_exp [ -  ZT(k)t(O)] (46) Ca(Q)- pt(Q) 

where t(O) is the mean distance through the sample to 
reach a detector at angle 0. Therefore 

1 PI(Q) (47) 
rl(Q)= Zr(k)t(O~) In p,(Q) 

is expected to be a smooth function and a candidate 
for smoothing even though Zr(k) and t(O) may vary. 
The variation of ZT(k) is potentially important in a 
variable-wavelength (i.e. time-of-flight) measurement, 
as the variation of t(O) with scattering angle may be in 
a fixed-wavelength measurement. 

Error estimates 6Pt and 6Pu are generated in the 
calculation. The errors 6rl(Q) in r/(Q) are 

1 6P,(Q) (48) 
6tl(Q)- Er(k)t(O) Pt(Q) " 

These estimates may be used in generating smoothed 
versions (such as might be calculated by spline function 
fitting) of PM(Q) and r/(Q). If the smoothed versions of 
PM(Q) and q(Q) are denoted by PM(Q) and ~/(Q), the 
attenuation correction factor is 

Ca(Q)= exp [-~(Q)ZT(k)t(O)] (49) 

and the overall correction factor is 

Co(Q)=CA(Q) I +  p--f@j. (50) 

Since P~(Q) is subject to computational statistical error 
while P~(Q) is not, it may be further advantageous to 
compute 

PM(Q) 
Co(Q)=CA(Q)+ - -  (51) 

p~(Q) " 

It is a matter of taste whether the multiple scattering 
is applied as a correction factor or as an additive cor- 
rection. An advantage of the former method is that the 
attenuation factor CA can sometimes be computed 
accurately by means other than a Monte Carlo simula- 
tion, and the separately calculated CA can either be 
applied to check the simulation, or used instead of the 
simulation to improve accuracy, as suggested earlier 
(Mildner, Carpenter & Pelizzari, 1974). Consequently 
it is the efficiency of obtaining the function PT/PI that 
makes the optimized technique more useful than the 
direct simulation for the correction of measured data 
as a function of scattering angle. (Moreover in the case 
of computing multiple scattering corrections to data 
obtained on neutron time-of-flight diffractometers 
with their relatively few scattering angles, the cost of 
the direct simulation becomes prohibitive). Among the 
various combinations of functions we have found the 
ratio PT/Pa to be the most smoothly varying with Q. 

Fig. 4 shows a cubic spline smoothing function fitted 
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Fig. 4. The smoothing of the multiple scattering correction factor as a 
function of wave vector transfer using spline functions for time-of- 
flight diffraction data of a glassy carbon. The fluctuations in this 
function can be seen to correlate with the features in the structure 
factor (below) of the material. 
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Fig. 5. The multiple scattering and attenuation correction factors at 
90 ~ scattering for time-of-flight diffraction data of a cylindrical 
sample of a glassy carbon. 

to the multiple scattering correction factor of a neutron 
time-of-flight diffraction experiment on a sample of 
glassy carbon which exhibits intense small-angle scat- 
tering (Mildner & Carpenter, 1974). The structure 
factor of the sample is greatly varying, and the peaks 
and valleys of the multiple-scattering correction factor 
can be correlated with those of the structure factor as 
should be expected, for the correction factor is greatest 
for those values of Q for which the structure factor is 
low, and vice versa. Hence, the effect of multiple scat- 
tering is to decrease the peaks in the measured spec- 
trum and to fill in the minima, and the application of 
the correction is such that the peaks are enhanced in 
the true structure factor. 

Fig. 5 shows the results of the Monte Carlo simula- 
tion, namely the attenuation and multiple-scattering 
correction factors for data taken at a scattering angle 
of 90 °. The sample was a long cylinder of diameter 2 cm 
and density 0"075 atom b - t  cm-1, with the axis per- 
pendicular to the scattering plane. The diameter was 
thus about a half-scattering mean free path, assuming 
5-5 b atom- 1 scattering. It can be seen that these cor- 
rections vary greatly so that they need to be computed 
in detail to obtain accurate results of the diffraction 
measurement. 

6. Conclusion 

Monte Carlo methods for correcting diffraction meas- 
urements can be wasteful if optimized techniques such 
as those introduced by Bischoff are not used. A simple 
program for a monochromatic source has been pre- 
sented in which successive scattering events are forced 
to occur within the sample, and each simulated path, 
weighted by its relative probability, contributes to the 
scattered intensity measured by a detector. A method 
of grouping the neutron histories is used to determine 
the statistics of a particular simulation. The most useful 
result is the multiple-scattering correction factor which 
may be obtained easily from the simulation, and is not 
featureless, especially when the structure factor of the 
sample modulates considerably. 

The authors thank J. R. D. Copley for the donation 
of a deck of his program MSCAT, and acknowledge 
C. Lingus for stimulating discussions. 
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